C. U. SHAH UNIVERSITY Winter Examination-2020

Subject Name : Mathematical Concepts for Computer Science

Subject Code : 4CS01IFM2		Branch: B.Sc.I.T.	
Semester: 1	Date: 12/03/2021	Time: 03:00 To 06:00	Marks: 70

Instructions:

Q-2

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Attempt the following questions: Q-1 [14] a) Define : Disjoint Sets (01)**b**) Give one example of infinite set. (01) c) Let $A = \{0,1,2,3\}$, $B = \{1,2,3,4\}$ then find B - A. (01)**d**) Let $A = \begin{bmatrix} 0 & 4 \\ -8 & 7 \end{bmatrix}$, then det A =_____ (01) e) Write all improper subsets of $A = \{1, 2\}$. (01)f) What is the cardinality of a set $\{1,3,5,100\}$? (01) $\lim_{x \to 0} \frac{\sin x}{x} = \underline{\qquad}$ **g**) (01) **h**) If (a, b), (c, -d) and (-a, b) are collinear then what can we say about the (01) area of triangular formed by these three points? Define: one-one function. **i**) (01)**j**) Let $A = \begin{bmatrix} -1 & 0 \\ 9 & 4 \end{bmatrix}$, find minor of the element '4'. **k**) Check whether the function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^3$ is even or (01) (01) odd?

i) True or False: The product of two odd function is odd function. (01) **m)** Let A and B be two sets, let |A| = 5, |B| = 3 and $|A \cup B| = 5$ then find (01) $|A \cap B|$

n)
$$\lim_{x \to 0} \sin x =$$
 (01)

Attempt any four questions from Q-2 to Q-8

Attempt all questions [14]

a) If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{bmatrix}$, then prove that $A^2 - 4A - 5I = 0$. (06)

b) Let
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -2 & 4 \\ 1 & 5 & 0 \end{bmatrix}$ then find a matrix X where (04)
 $X = -(A + B).$

c) Find 4AB where
$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$. (04)

Q-3	a)	Attempt all questions Draw a Venn Diagram for the following sets: $U = \{x \in \mathbb{N} : 1 \le x < 15\}$		
	b)	$A = \{1,2,6,9,13\}, B = \{1,3,6,11,14,15\}, C = \{1,2,3,6,9,10,12,14\}$ Verify Distributive Law of Intersection over Union for these following sets. $A = \{1,2,6,9,13\}, B = \{1,3,6,11,14,15\}, C = \{1,2,3,6,9,10,12,14\}$		
	c)	Define Proper subset and Finite set with example.	(04)	
Q-4	a)	Attempt all questions 1) Check whether the following functions $f: R \to R$ are one-one or not? i) $f(x) = x - 1$ ii) $f(x) = x^2$ 2) Check whether the following functions $f: R \to R$ are onto or not? i) $f(x) = x^2 - 4$	[14] (06)	
	h)	ii) $f(x) = x + 1$	(04)	
		Draw a graph of a function $f: \mathbf{R} \to \mathbf{R}$ defind by $f(x) = x , x \in \mathbf{R}$. Check whether the function $f: \mathbf{R} \to \mathbf{R}$ is even, odd, neither even nor odd? i) $f(x) = \sin x$ ii) $f(x) = x^3$ iii) $f(x) = x^2 + 5x - 1$	(04)	
Q-5	a)	Attempt all questions For matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 4 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$ Show that $AB = AC$.	[14] (06)	
	b)	Define Reflexive , Anti-symmetric and Transitive Relation.	(05)	
	c)	Check whether the relation <i>R</i> on a set <i>A</i> is reflexive or transitive? $A = \{1,2,3,4\}, R = \{(1,1), (1,2), (2,2), (2,1), (3,3), (3,4), (4,3), (4,4)\}$	(03)	
Q-6	``	Attempt all questions	[14]	
	a)	In which ratio does the point (7,3) divide the line segement joining the points $P(4, -3)$ and $Q(8,5)$?	(05)	
	b)	Find the area of triangle made by following points: i) (8,12), (11,8), (6,8) ii) (5,-1), (4,-5), (5,-4)	(05)	
	c)		(04)	
Q-7	a)	Attempt all questions Let $A = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 1 & -1 \\ 5 & 0 & 1 \end{bmatrix}$, find A^{-1} if possible.	[14] (06)	

b) Find 1)
$$\lim_{x\to 5} 3(9x+2)$$

2) $\lim_{x\to 8} \frac{x+7}{x-5}$
3) $\lim_{x\to 0} (4x^2 - x + 1)(x-2)$
4) $\lim_{x\to 0} (x+1)^{\frac{1}{x}}$

c) Verify
$$(A \cup B)^c = A^c \cap B^c$$
 for the following sets:
 $U = \{1, 2, ..., 18\}, A = \{1, 2, 4, 8, 16, 17\}$ and $B = \{5, 4, 14, 16, 17, 18\}$
(04)

Q-8 Attempt all questions

uestions [14]

a) Let $A = \{x \in N \mid 2 < x < 8\}$, $B = \{x \in Z \mid -1 \le x \le 6\}$ then find (05) $A \cup B, A \cap B, A - B$ and B - A.

b)
Find *adj* A if
$$A = \begin{bmatrix} 1 & 2 & 5 \\ 3 & 1 & 4 \end{bmatrix}$$
. (05)

i) Distance between
$$(0,0)$$
 and $(36,15)$

ii) Distance between (a,b) and (-a,-b)

(04)

(04)